
REQUIREMENTS SPECIFICATIONS FOR

HYBRID SYSTEMS

Constance Heitmeyer

Code 5546

Naval Research Laboratory

Washington, DC 20375

1 Introduction

The purpose of a computer system requirements speci�cation is to describe the

computer system's required external behavior. To avoid overspeci�cation, the

requirements speci�cation should describe the system behavior as a mathemat-

ical relation between entities in the system's environment. When some of these

entities are continuous and others are discrete, the system is referred to as a

\hybrid" system.

Although computer science provides many techniques for representing and

reasoning about the discrete quantities that a�ect system behavior, practical

approaches for specifying and analyzing systems containing both discrete and

continuous quantities are lacking. The purpose of this paper is to present a for-

mal framework for representing and reasoning about the requirements of hybrid

systems. As background, the paper briey reviews an abstract model for specify-

ing system and software requirements, called the Four Variable Model [12], and

a related requirements method, called SCR (Software Cost Reduction) [10, 1].

The paper then introduces a special discrete version of the Four Variable Model,

the SCR requirements model [8] and proposes an extension of the SCR model

for specifying and reasoning about hybrid systems.

2 Background

2.1 The Four Variable Model

The Four Variable Model, which is illustrated in Figure 1, describes the required

system behavior as a set of mathematical relations on four sets of variables|

monitored and controlled variables and input and output data items. A moni-

tored variable represents an environmental quantity that inuences system be-

havior, a controlled variable an environmental quantity that the system controls.

Input devices (e.g., sensors) measure the monitored quantities and output de-

vices set the controlled quantities. The variables that the devices read and write

are called input and output data items.

The four relations of the Four Variable Model are REQ, NAT, IN, and OUT.

The relations REQ and NAT provide a black box speci�cation of the required

Environment Environment

Monitored
Variables

Controlled
Variables

System

Software

Input
Data
Items

REQ and NAT

SOFT

Input
Devices

Output
Devices

Output
Data
Items

IN OUT

Fig. 1. Four Variable Model.

system behavior. NAT describes the natural constraints on system behavior|

that is, the constraints imposed by physical laws and by the system environment.

REQ de�nes the system requirements as a relation the system must maintain

between the monitored and the controlled quantities.

One approach to describing the required system behavior, REQ, is to specify

the ideal system behavior, which abstracts away timing delays and imprecision,

and then to specify the allowable system behavior, which bounds the timing

delays and imprecision. Typically, a function speci�es ideal system behavior,

whereas a relation speci�es the allowable system behavior. The allowable system

behavior is a relation rather than a function because it may associate a monitored

variable with more than a single value of a controlled variable. For example, if

the system is required to display the current water level, it may be acceptable

for the displayed value of water level at time t to deviate from the actual value

at time t by as much as 0.1 cm.

The system requirements are easier to specify and to reason about if the ideal

behavior is de�ned �rst. Then, the required precision and timing can be speci-

�ed separately. This is standard engineering practice. Moreover, this approach

provides an appropriate separation of concerns, since the required system timing

and accuracy can change independently of the ideal behavior [3].

The relation IN speci�es the accuracy with which the input devices measure

the monitored quantities and the relation OUT speci�es the accuracy with which

the output devices set the controlled quantities. To achieve the allowable system

behavior, the input and output devices must measure the monitored quantities

and set the controlled quantities with su�cient accuracy and su�ciently small

timing delays. In the Four Variable Model, the software requirements speci�ca-

tion, called SOFT, de�nes the required relation between the input and output

data items. SOFT can be derived from REQ, NAT, IN, and OUT.

2.2 SCR Requirements Speci�cations

The SCR requirements method was introduced in 1978 with the publication of

the requirements speci�cation for the A-7 Operational Flight Program [10, 1].

Since its introduction, the method has been extended to specify system as well

as software requirements and to include, in addition to functional behavior, the

required system timing and accuracy [12, 13, 14]. Designed for use by engineers,

Environment

Safety
Injection

Safety Injection System

Software
Input

Devices
Output
Devices

Sensor1

Safety
Injection
Device

WaterPres

Reset

Block Sensor2

Sensor3

Terms
Overridden{ .

.

.

Mode
Class{

Pressure

TooLow

High

Permitted

Input
Devices

Output
Devices

Display
Device

Display
Pres

Environment

Fig. 2. Requirements Speci�cation for Safety Injection.

the SCR method has been successfully applied to a variety of practical systems,

including avionic systems; a submarine communications system [9]; and safety-

critical components of a nuclear power plant [14]. More recently, a version of the

SCR method called CoRE [4] was used to document requirements of Lockheed's

C-130J Operational Flight Program (OFP) [5]. The OFP consists of more than

100K lines of Ada code, thus demonstrating the scalability of the SCR method.

To represent requirements both abstractly and concisely, SCR speci�cations

use two special constructs, called mode classes and terms. A mode class is a

state machine, de�ned on the monitored variables, whose states are called sys-

tem modes (or simply modes) and whose transitions are triggered by changes in

the monitored variables. Complex systems are de�ned by several mode classes

operating in parallel. A term is an auxiliary function de�ned on monitored vari-

ables, mode classes, or other terms. In SCR speci�cations, conditions and events

are used to describe the system states. A condition is a logical proposition de-

�ned on a single system state, whereas an event is a logical proposition de�ned

on a pair of system states. An event occurs when a system entity (that is, a

monitored or controlled variable, a mode class, or a term) changes value. A spe-

cial event, called an monitored event, occurs when a monitored variable changes

value. Another special event, called a conditioned event, occurs if an event occurs

when a speci�ed condition is true.

To illustrate the SCR method, we consider a simpli�ed version of the con-

trol system for safety injection described in [2]. The system uses three sensors

to monitor water pressure and turns on a safety injection system (which adds

coolant to the reactor core) when the pressure falls below some threshold. The

system also displays the current value of water pressure. The system operator

blocks safety injection by turning on a \Block" switch and resets the system after

blockage by turning on a \Reset" switch. Figure 2 shows how SCR constructs

are used in specifying the requirements of the control system. Water pressure

and the \Block" and \Reset" switches are represented as monitored variables,

WaterPres, Block, and Reset; safety injection and the display as controlled vari-

ables, SafetyInjection and DisplayPres; each sensor value as an input data

item; and the hardware interfaces between the control system software and the

safety injection system and the display output as output data items.

The speci�cation for the control system includes a mode class Pressure, a

term Overridden, and several conditions and events. The mode class Pressure,

Old Mode Event New Mode

TooLow @T(WaterPres � Low) Permitted

Permitted @T(WaterPres � Permit) High

Permitted @T(WaterPres < Low) TooLow

High @T(WaterPres < Permit) Permitted

Table 1. Mode Transition Table for Pressure.

Mode Events

High False @T(Inmode)

TooLow, @T(Block=On) @T(Inmode) OR
Permitted WHEN Reset=Off @T(Reset=On)

Overridden True False

Table 2. Event Table for Overridden.

an abstract model of the monitored variable WaterPres, contains three modes,

TooLow, Permitted, and High. At any given time, the system must be in one of

these modes. A drop in water pressure below a constant Low causes the system

to enter mode TooLow; an increase in pressure above a larger constant Permit

causes the system to enter mode High. The term Overridden denotes situations

in which safety injection is blocked. An example of a condition in the speci�cation

is \WaterPres< Low". Events are denoted by the notation \@T". Two examples

of events are the monitored event @T(Block=On) (the operator turns Block from

Off to On) and the conditioned event @T(Block=On) WHEN WaterPres < Low

(the operator turns Block to On when water pressure is below Low).

SCR requirements speci�cations use special tables, called condition tables,

event tables, and mode transition tables, to represent the required system be-

havior precisely and concisely. Each table de�nes a mathematical function.1 A

condition table describes a controlled variable or a term as a function of a mode

and a condition; an event table describes a controlled variable or term as a

function of a mode and an event. A mode transition table describes a mode

as a function of another mode and an event. While condition tables de�ne to-

tal functions, event tables and mode transition tables may de�ne partial func-

tions, because some events cannot occur when certain conditions are true. For

example, in the control system above, the event @T(Pressure=High) WHEN

Pressure=TooLow cannot occur, because starting from TooLow, the system can

only enter Permitted when a state transition occurs.

Tables 1{3 are part of REQ, the requirements speci�cation for the control

system. Table 1 is a mode transition table describing the mode class Pressure as

1 Although SCR speci�cations can be nondeterministic, our initial model is restricted

to deterministic systems.

Mode Conditions

High, Permitted True False

TooLow Overridden NOT Overridden

Safety Injection Off On

Table 3. Condition Table for Safety Injection.

a function of the current mode and the monitored variable WaterPres. Table 2

is an event table describing the term Overridden as a function of Pressure,

Block, and Reset. Table 3 is a condition table describing the controlled variable

Safety Injection as a function of Pressure and Overridden. Table 3 states,

\If Pressure is High or Permitted, or if Pressure is TooLow and Overridden

is true, then Safety Injection is Off; if Pressure is TooLow and Overridden

is false, then Safety Injection is On."2

3 SCR Requirements Model

To provide a formal foundation for tools analyzing the speci�cations and simu-

lating system execution [7, 6], we have developed a discrete version of the Four

Variable Model, called the SCR requirements model [8]. The SCR model rep-

resents a system as a �nite state machine and each monitored and controlled

quantity as a discrete variable. Presented below are excerpts from the de�nition

of the formal model [8] and a description of the interpretation of the REQ and

NAT relations within the SCR model.

3.1 Summary of the SCR Model

Entities and Types. We require the following sets.

{ MS is the union of N nonempty, pairwise disjoint sets, M1;M2; : : : ;MN , called
mode classes.

{ TS is a union of data types, where each type is a nonempty set of values.3

{ VS is a set of entity values with VS =MS [TS.
{ RF is a set of entity names r, which is partitioned into the set of mode names MR,

the set of monitored variable names IR, the set of term names GR, and the set of

controlled variable names OR. For all r 2 RF, TY(r) � VS is the type (i.e., the
set of possible values) of entity r.

System State and Conditions. A system state s is a function that maps

each entity name r in RF to a value. That is, for all r 2 RF: s(r) = v, where

v 2 TY(r). Conditions are logical propositions de�ned on entities in RF.

2 The notation \@T(Inmode)" in a row of an event table describes system entry into

the group of modes in that row.
3 For example, the type \nonnegative integers" is the set N = f0; 1; 2; : : :g, the type
Boolean is the set B = ftrue; f alseg, etc.

System and Events. A system is a state machine whose transition from one
state to the next is triggered by special events, called monitored events. More
precisely, a system, �, is a 4-tuple � = (Em; S; s0; T); where

{ Em is a set of monitored events. A primitive event is denoted as @T(r = v),

where r 2 RF is an entity and v 2 TY(r). A monitored event is a primitive event

@T(r = v), where r 2 IR is a monitored variable.
{ S is the set of possible system states.

{ s0 is a special state called the initial state.

{ T is the system transform, a function from Em � S into S.

In addition to denoting primitive events, the \@T" notation also denotes

conditioned events. A simple conditioned event is expressed as

@T(c) WHEN d;

where @T(c) is any event (i.e., a change in a state variable) and d is a simple

condition or a conjunction of simple conditions. A conditioned event e is a logi-

cal proposition composed of simple conditioned events connected by the logical

connectors ^ and _. The proposition represented by a simple conditioned event

is de�ned by

@T(c) WHEN d = NOT c ^ c0 ^ d;

where the unprimed version of c represents c in one state (the old state) and the

primed version of c represents c in another state (the new state).

System History Associated with every monitored variable r 2 IR is a set of

ordered pairs Vr ,

Vr = f(v; v0) j v 6= v0; v 2 TY(r); v0 2 TY(r)g;

that de�nes all possible transitions of r and that contains r's initial value. A

monitored event @T(r = v0) is enabled in state s if (s(r); v0) 2 Vr . A history �

of a system is a function from the set of nonnegative integers N to Em�S such

that (1) the second element of�(0) is s0, (2) for all n 2 N , if�(n) = (e; s), then

e is enabled in s, and (3) for all n 2 N , if �(n) = (e; s) and �(n+1) = (e0; s0),

then T (e; s) = s0.

Ordering the Entities. Given an input event e in Em, states s and s0 in S,

and T (e; s) = s0, the value of each entity r in state s0 may depend on any entity

in the old state s but on only some entities in the new state s0. To describe the

dependencies of any entity r 2 RF on entities in the new state, we order the

entities in RF as a sequence R,

R = <r1; r2; : : : ; rI; rI+1; : : : ; rK; rK+1; : : : ; rP >;

where < r1; r2; : : : ; rI >; ri 2 IR, is the subsequence of monitored variables,

<rI+1; rI+2; : : : ; rK>; ri 2 GR [MR, is the subsequence containing terms and

modes, and < rK+1; rK+2; : : : ; rP >; ri 2 OR is the subsequence of controlled

variables.

Modes Conditions

m1 c1;1 c1;2 : : : c1;p

m2 c2;1 c2;2 : : : c2;p

: : : : : : : : : : : : : : :

mn cn;1 cn;2 : : : cn;p

ri v1 v2 : : : vp

Table 4. Typical Format for a Condition Table.

The entities ri 2 R are partially ordered so that for all i, i0, i > I, 1 � i0 � K;

the value of entity ri in any state s can only depend on the value of entity ri0 in

the same state s if i0 < i. This de�nition reects the fact that each monitored

variable can only be changed by external events and cannot depend on the other

entities in R. In contrast, each term in s can depend on the monitored variables,

the modes, or other terms in s. Similarly, each mode in s can depend on the

monitored variables, the terms, or other modes in s. Finally, each controlled

variable in s can depend on any entity that precedes it in the sequence R.

Computing the Transform Function. Each controlled variable, term, and

mode class ri 2 RF n IR is de�ned by a function Fi. The transform function T

computes the new state by composing the Fi's. In an SCR requirements speci-

�cation, most of the Fi's are described by tables.

Table 4 shows a typical format for one class of tables, condition tables. A

condition table describes an output variable or term ri as a relation �i,

�i = f(mj ; cj;k; vk) 2M�(i) �Ci �TY(ri) j 1 � j � n; 1 � k � pg;

where Ci is a set of conditions de�ned on entities in RF and M�(i) is the mode
class associated with ri. The relation �i must satisfy the following properties:

1. The mj and the vk are unique.
2. [ni=1mj = M�(i) (All modes in the mode class are included).

3. For all j: _pk=1cj;k = true (Coverage: The disjunction of the conditions in each

row of the table is true).

4. For all j; k; l; k 6= l: cj;k ^ cj;l = false (Disjointness: The pairwise conjunction of

the conditions in each row of the table is always false).

Given these properties, we can show that �i is a function, which can be expressed

as: for all j; k; 1 � j � n; 1 � k � p, �i(mj ; cj;k) = vk.
To make explicit entity ri's dependencies on other entities, we consider an

alternate formFi of the function �i. To de�ne Fi, we require the new state depen-
dencies set, fyi;1; yi;2; : : : ; yi;ni

g, where yi;1 is the entity name for the associated
mode class and for all j, 2 � j � ni, yi;j appears in some condition c in Ci.

Based on this set and �i, we de�ne Fi as

Fi(yi;1; yi;2; : : : ; yi;ni
) =

8>><
>>:

v1 if (yi;1=m1 ^ c1;1) _ : : : _ (yi;1=mn ^ cn;1)
v2 if (yi;1=m1 ^ c1;2) _ : : : _ (yi;1=mn ^ cn;2)
...

vp if (yi;1=m1 ^ c1;p) _ : : : _ (yi;1=mn ^ cn;p):

The four properties guarantee that Fi is a total function.

3.2 The SCR Model, REQ, and NAT

NAT. In the SCR model, NAT models the behavior of the monitored and

controlled quantities. Consider the monitored variable Block in the example

above and let m1 = Block. The type de�nition of m1 is TY(m1) = fOff, Ong
and the possible changes of m1 from one state to the next are de�ned by

Vm1
= f(Off, On); (On, Off)g; that is, Block can change from Off to On or

from On to Off. Similarly, for the monitored variable m2 = Reset and the con-

trolled variable c1 = SafetyInjection, TY(m2) =TY(c1) = fOff, Ong and

Vm2
= Vc1 = f(Off, On); (On, Off)g.
The current SCR model describes all monitored and controlled quantities,

even those which are naturally continuous, as discrete variables. Doing so allows

us to represent the system as a �nite state machine. This representation facili-

tates formal analysis of the speci�cations and symbolic execution of the system

via simulation. For example, to model WaterPres as a discrete variable, we as-

sign m3 = WaterPres the type de�nition TY (m3) = f14; 15; : : :; 2000g, that is,
m3 is any integer between 14 and 2000. We constrain changes in WaterPres by

requiring that WaterPres can change from one state to the next by no more

than 1 psi, that is,
js0(m3) � s(m3)j 2 f0; 1g;

where s and s0 are any two consecutive states. This assumption implies the

statement in Section 2.2 that the mode class Pressure cannot transition directly

from TooLow to High or from High to TooLow. Similarly, we can de�ne the type

of controlled variable c2 = DisplayPres as TY (c2) = f14; 15; : : :; 2000g and

constrain changes in c2 by requiring that, if s and s0 are any two consecutive

states, then js0(c2)� s(c2)j 2 f0; 1g.

Ideal Behavior. In the SCR model, the transform function T de�nes the ideal

system behavior. As noted above, T computes the new state from an event and

the current state by composing the functions Fi that de�ne the values of terms,

mode classes, and controlled variables. Clearly, reasoning about the ideal system

behavior using T abstracts away timing delays and imprecision.

4 Extending the SCR Model to Hybrid Systems

To use the SCR model to specify and to reason about hybrid systems, we need

to extend the model in two ways:

{ Each monitored quantity and controlled quantity that is naturally continuous

is represented by a continuous (rather than a discrete) variable.

{ The allowable system behavior is de�ned by associating timing and accuracy

requirements with each controlled variable.

4.1 Adding Continuous Variables

As an example, consider the monitored variable m3 = WaterPres and the con-

trolled variable c2 = DisplayPres. We can de�ne m3 as a real number between

14.0 and 2000.0, that is, TY(m3) = fx j x 2 R+ ^ 14:0 � x � 2000:0g. Physical
laws (part of NAT) bound the rate at which m3 can change. To express this

bound, we may state in the speci�cation that, in any time interval of length 0.1

seconds, the maximum change in the value of WaterPres is 0.03 psi; that is,

jm3(t
0) �m3(t)j � :03;

when t0 � t = 0:1 sec. The constraints on c2 may be de�ned in a similar way.

Clearly, the bounds can be expressed by more complex functions, e.g., by contin-

uously di�erentiable functions, by piecewise continuous functions, or by bounded

derivatives.

We note that any reasoning that used the discrete models of WaterPres

and DisplayPres to analyze system behavior should be reevaluated to make

sure the reasoning is still valid when more accurate models of these two natu-

rally continuous quantities are used. This is especially important when discrete

approximations of continuous quantities are used in verifying critical system

properties.

4.2 Adding Time

The SCR model introduced in Section 3.1 is untimed. Thus if an event occurs

in state s that changes a controlled variable, we assume that the next state s0

reects the change in the controlled variable (as well as changes in the monitored

variable that triggered the new state and any resulting changes in mode classes,

terms, and other controlled variables). To add time to the SCR model, we adapt

the approach developed by Lynch and Vaandrager [11] for timed automata. This

approach associates each event in a state history with a time. More precisely,

for each state history, s0; (e1; s1); (e2; s2); : : :, we de�ne a sequence of the form

(e1; t1); (e2; t2); : : :, where each ei is either a monitored event or an event changing

the value of a controlled variable and each ti is a non-negative real-valued time.

We require that, for all i, i+1, ti+1 � ti and de�ne a function TIME that maps

each event e in a system history to a time t, that is, TIME(e) = t.

4.3 Specifying the Actual System Behavior

To specify the allowable system behavior, we associate timing and accuracy

requirements with each controlled variable. Consider, for example, the controlled

variable DisplayPres in the example, and let c2 = DisplayPres. To specify

the constraints on c2, we must state the degree of accuracy that is required

in the displayed value of WaterPres. For example, we may require that the

displayed value of WaterPres at any given t is within 0.1 psi of the actual value

of WaterPres at time t, that is, jc2(t)�m3(t)j � 0:1 psi.

Consider a system design that uses a given input device to measure WaterPres,

a given output device to write the value of WaterPres to the display, and spe-

ci�c hardware and software. Then, the maximum rate at which WaterPres can

change in a given time interval (de�ned by NAT), the degree of accuracy and

timing delays associated with the input and output devices (de�ned by IN and

OUT), and the system delay in reading from and writing to the devices together

determine whether the required accuracy can be achieved.

To specify the requirements for turning the safety injection system on and o�,

we must specify timing constraints on the controlled variable SafetyInjection.

Let c1 represent SafetyInjection. Suppose that the safety injection system

must be turned on within, say, 0.2 seconds after the occurrence of the triggering

event (e.g., WaterPres drops below Low when Overridden= false). Then, if the

triggering event ek occurs at time t, that is, TIME(ek) = t, the event ek+j that

turns on SafetyInjection must occur within the time interval [t; t+ 0:2], that

is, TIME(ek+j) 2 [t; t + 0:2]. By considering a particular system design|that

is, the timing delays and degree of accuracy of the input and output devices

and computer hardware and software that control safety injection|we can com-

pute whether safety injection will always be activated within the required time

interval.

5 Summary

We have presented several examples to show how the SCR requirements model

can be extended to specify and to reason about hybrid systems. The next step

is to extend the formal de�nition of the SCR model to include continuous vari-

ables, time, and accuracy. By adding such information to system and software

requirements speci�cations, we can provide precise guidance to the developers of

computer systems and a formal foundation for analyzing the behavior of these

systems.

Acknowledgments

The perceptive and constructive comments of Stuart Faulk, Ralph Je�ords, Jim

Kirby, and Bruce Labaw on an earlier draft are gratefully acknowledged.

References

1. Thomas A. Alspaugh, Stuart R. Faulk, Kathryn Heninger Britton, R. Alan Parker,

David L. Parnas, and John E. Shore. Software requirements for the A-7E aircraft.
Technical Report NRL-9194, Naval Research Lab., Wash., DC, 1992.

2. P.-J. Courtois and David L. Parnas. Documentation for safety critical software. In

Proc. 15th Int'l Conf. on Softw. Eng. (ICSE '93), pages 315{323, Baltimore, MD,
1993.

3. Stuart Faulk, Lisa Finneran, James Kirby, Jr., and Assad Moini. Consortium

requirements engineering handbook. Technical Report SPC-92060-CMC, Software
Productivity Consortium, Herndon, VA, December 1993.

4. Stuart R. Faulk, John Brackett, Paul Ward, and James Kirby, Jr. The CoRE

method for real-time requirements. IEEE Software, 9(5):22{33, September 1992.
5. Stuart R. Faulk, Lisa Finneran, James Kirby, Jr., S. Shah, and J. Sutton. Expe-

rience applying the CoRE method to the Lockheed C-130J. In Proc. 9th Annual

Conf. on Computer Assurance (COMPASS '94), pages 3{8, Gaithersburg, MD,
June 1994.

6. Constance Heitmeyer, Alan Bull, Carolyn Gasarch, and Bruce Labaw. SCR*: A

toolset for specifying and analyzing requirements. In Proc. 10th Annual Conf. on
Computer Assurance (COMPASS '95), pages 109{122, Gaithersburg, MD, June

1995.

7. Constance Heitmeyer, Bruce Labaw, and Daniel Kiskis. Consistency checking of
SCR-style requirements speci�cations. In Proc., International Symposium on Re-

quirements Engineering, March 1995.

8. Constance L. Heitmeyer, Ralph D. Je�ords, and Bruce G. Labaw. Tools for analyz-
ing SCR-style requirements speci�cations: A formal foundation. Technical Report

NRL-7499, Naval Research Lab., Wash., DC, 1995. In preparation.

9. Constance L. Heitmeyer and John McLean. Abstract requirements speci�cations:
A new approach and its application. IEEE Trans. Softw. Eng., SE-9(5):580{589,

September 1983.

10. Kathryn Heninger, David L. Parnas, John E. Shore, and John W. Kallander. Soft-
ware requirements for the A-7E aircraft. Technical Report 3876, Naval Research

Lab., Wash., DC, 1978.

11. Nancy Lynch and Frits Vaandrager. Forward and backward simulations for timing-
based systems. In Proceedings of REX Workshop \Real-Time: Theory in Practice",

volume 600 of Lecture Notes in Computer Science, pages 397{446, Mook, The

Netherlands, June 1991. Springer-Verlag.

12. David L. Parnas and Jan Madey. Functional documentation for computer systems.

Technical Report CRL 309, McMaster Univ., Hamilton, ON, Canada, September

1995.

13. A. John van Schouwen. The A-7 requirements model: Re-examination for real-time

systems and an application for monitoring systems. Technical Report TR 90-276,

Queen's Univ., Kingston, ON, Canada, 1990.
14. A. John van Schouwen, David L. Parnas, and Jan Madey. Documentation of re-

quirements for computer systems. In Proc. RE'93 Requirements Symp., pages

198{207, San Diego, CA, January 1993.

This article was processed using the LATEX macro package with LLNCS style

